Fast Ramp in the Main Injector

Motivation:

- Near term NuMI: To increase the proton throughput
- Long term A step on the roadmap towards a 2 MW Main Injector in the Proton Driver era:
 - Beam intensity increase by a factor of 5
 - Cycle time reduction by 20%
 - Beam power increase by a factor of 6 to 2 MW

Goal:

- To reduce NuMI cycle time from 1.867 sec (28 Booster cycles) to 1.533 sec (23 Booster cycles).
- To increase max pdot from 240 GeV/s to 280 GeV/s (which was revised from 305 GeV/s as originally assumed)

- Previous RF calculations for 5 cases: (J.G./W.C.)
 - > 240 GeV/s, 3 x 10¹³
 - > 305 GeV/s, 3 x 10¹³
 - 240 GeV/s, 6 x 10¹³
 (assuming successful 12-batch slip stacking or barrier RF stacking)
 - 305 GeV/s, 6 x 10¹³ (ditto)
 - > 305 GeV/s, 1.5 x 10¹⁴ (goal of a 2-MW MI in the Proton Driver era, documented in TM-2169)
- New calculations:
 - > 280 GeV/s, 3.3 x 10¹³
 - > 280 GeV/s, 4 x 10¹³

Bucket size calculation:

- > Parameters:
 - $k \equiv \gamma/\gamma_t$ $\gamma_t = 21.6$
 - φ = synchronous phase, α = moving bucket factor (see attached plot)
 - 17 cavities, each 240 kV for a total of 4.08 MV (but only 1.1 MV @inj)
 - Bucket size ≥ 0.6 eV-s (per I.K.)
- Injection:
 - $E = 8 \text{ GeV}, \gamma = 9.526, k = 0.441$
 - V(rf) = 1.1 MV, stationary bucket = 0.83 eV-s (inj)
- After transition, minimum stationary bucket occurs at $k = \sqrt{3}$:
 - V(rf) = 4.08 MV, minimum stationary bucket = 7.9 eV-s
 - At **240 GeV/s**, V = 2.67 MV/turn, φ = 40.9°, α = 0.208, moving bucket = **1.64 eV-s**
 - At **280 GeV/s**, V = 3.10 MV/turn, $\phi = 49.5^{\circ}$, $\alpha = 0.129$, moving bucket = **1.02 eV-s**
 - At **305 GeV/s**, V = 3.38 MV/turn, ϕ = 55.9°, α = 0.085, moving bucket = **0.67 eV-s**
- Before transition, $k = \sqrt{3}/2 \implies$ same stationary bucket area as $k = \sqrt{3}$. So the maximum ramp rate can start here.

Power calculation:

- > Parameters:
 - Cavity Q = 6500, R = 7.8 x $10^5 \Omega$, R/Q = 120 Ω
 - 17 cavities, each delivering 200 kW for a total of 3.4 MW
 - Wall loss: $V(gap) = 240 \text{ kV} \Rightarrow P(wall) = 37 \text{ kW each, or } 0.63 \text{ MW for } 17 \text{ cavities}$
 - 3.3 x 10¹³ and 4.0 x 10¹³ (per I.K.)
- Power requirement:
 - At 240 GeV/s, 3.3 x 10¹³, P(beam)= 1.27 MW, P(wall) = 0.63 MW, P(total) = 1.90 MW
 - At 240 GeV/s, 4.0 x 10¹³, P(beam)= 1.54 MW, P(wall) = 0.63 MW, P(total) = 2.17 MW
 - At 280 GeV/s, 3.3 x 10¹³, P(beam)= 1.48 MW, P(wall) = 0.63 MW, P(total) = 2.11 MW
 - At 280 GeV/s, 4.0 x 10¹³, P(beam)= 1.79 MW, P(wall) = 0.63 MW, P(total) = 2.42 MW

High Intensity Robinson stability:

- > Parameters:
 - Anode power = 100 kW, wall loss = 37 kW \Rightarrow dissipation = 137 kW each for a total of **2.33 MW**
- Stability criterion:
 - Dissipation power > P(beam), which is satisfied in all the cases.

- Items for this meeting:
 - Operation requirement (I.K.)
 - Magnet power supply (D.W.)
 - RF (D.W./J.R./J.G.)
 - Voltage
 - Power
 - Bucket area (especially on the initial parabola where the bucket size is smallest due to a combination of limited RF voltage, low beam energy and small moving bucket factor)
 - Magnet (D.H.)
- Possible collaboration with MINOS:
 - > D. Michael showed strong support to this project.